
Для простых расчётов можно использовать следующие соотношения.

- 1) $Q (\kappa y \delta. M/qac) = N (\kappa B_T) / (t_2-t_1), где$
 - Q расход воды в системе отопления, расход насоса (куб.м/час)
 - N мощность котла (кВт)
 - t_2 температура греющей воды, в подающем трубопроводе (0 С), обычно +90 0 С +95 0 С
 - t_1 температура нагреваемой воды, в обратном трубопроводе (0 C), обычно +70 0 C
- 2) Напор циркуляционного насоса равен суммарному гидравлическому сопротивлению системы, высота здания роли не играет, если система замкнутая. По нашему опыту, обычно, в нормально рассчитанной и смонтированной системе суммарное гидравлическое сопротивление составляет 2 4 метра водяного столба.
- 3) Таким образом из п.1 и п.2 мы имеем две основные характеристики насоса, его рабочую точку, и можем приступить к его выбору. Полученная рабочая точка должна лежать на гидравлической кривой насоса в области максимального КПД (это примерно центральная область кривой), либо должна быть расположена очень близко к гидравлической кривой.

4) Если не известна мощность котла, то можно определить её из несложного соотношения, которое без особых ошибок можно применять при расчётах индивидуальных систем отопления:

На 10 м^2 отапливаемой площади $\approx 1 \text{ кВт}$ мощности котла + 20% запас

Определив по этому соотношению мощность котла и вернувшись κ п.1 находим данные для подбора циркуляционного насоса.